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Abstract
Neurons in the primary somatosensory cortex (S1) respond to peripheral stimulation with synchronized bursts of
spikes, which lock to the macroscopic 600-Hz EEG waves. The mechanism of burst generation and synchroni-
zation in S1 is not yet understood. Using models of single-neuron responses fitted to unit recordings from
macaque monkeys, we show that these synchronized bursts are the consequence of correlated synaptic inputs
combined with a refractory mechanism. In the presence of noise these models reproduce also the observed
trial-to-trial response variability, where individual bursts represent one of many stereotypical temporal spike
patterns. When additional slower and global excitability fluctuations are introduced the single-neuron spike
patterns are correlated with the population activity, as demonstrated in experimental data. The underlying
biophysical mechanism of S1 responses involves thalamic inputs arriving through depressing synapses to cortical
neurons in a high-conductance state. Our findings show that a simple feedforward processing of peripheral inputs
could give rise to neuronal responses with nontrivial temporal and population statistics. We conclude that neural
systems could use refractoriness to encode variable cortical states into stereotypical short-term spike patterns
amenable to processing at neuronal time scales (tens of milliseconds).
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Introduction
Neurons usually generate highly variable responses to

repeated presentations of the same stimulus. This vari-

ability might originate from thermal noise in ion channels
(Chow and White, 1996; Schneidman et al., 1998), recur-
rent activity in the network (van Vreeswijk and Sompolin-
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Significance Statement

Neurons in the hand area of the primary somatosensory cortex respond to repeated presentation of the
same stimulus with variable sequences of spikes, which can be grouped into distinct temporal spike
patterns. In a simplified model, we show that such spike patterns are product of synaptic inputs and intrinsic
neural properties. This model can reproduce both single-neuron and population responses only when a
private variability in each neuron is combined with a multiplicative gain shared over whole population, which
fluctuates over trials and might represent the dynamical state of the early stages of sensory processing. This
phenomenon exemplifies a general mechanism of transforming the ensemble cortical states into precise
temporal spike patterns at the level of single neurons.
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sky, 1996; Destexhe et al., 2003) or modulation of
neuronal excitability (Destexhe et al., 2001; Faisal et al.,
2008; Fontanini and Katz, 2008). Over recent years, many
results have shown that a significant fraction of this variabil-
ity is shared across large populations of neurons. These
shared fluctuations were attributed to the variations of in-
coming stimuli and modulation of excitability (Shadlen and
Newsome, 1998; Brody, 1999; Ecker et al., 2014; Goris et al.,
2014). However, most of these studies focused on spike-
rate variations over long time scales, neglecting millisecond-
range spike timing differences. Such short time scales might
be especially important for neurons that fire brief bursts of
spikes at a frequency reaching several hundred spikes per
second separated by much longer intervals of silences
(Evarts, 1964; Llinás and Jahnsen, 1982; Krahe and Gabbi-
ani, 2004). Since the transitions between bursting and tonic
firing characterized by longer interspike intervals are dynam-
ically controlled (Swadlow and Gusev, 2001) both time
scales might be relevant for neuronal processing.

Neurons in somatosensory cortices can encode their sen-
sory inputs in the precise lengths (�10 ms) of interspike
intervals (Panzeri et al., 2001; Estebanez et al., 2012; Witham
and Baker, 2015), which suggests that high firing precision is
important for the reliability of stimulus encoding. In the pri-
mary somatosensory cortex (S1) of macaque, single neu-
rons respond to peripheral stimulation with barrages of
spikes elicited at sub-millisecond precision (Baker et al.,
2003; Fig. 2). However, when presented repetitively, the
same stimulus produces variable responses in terms of the
number of elicited spikes and the lengths of interspike inter-
vals, which might limit the amount of information they can
carry. It is, however, possible that such trial-to-trial variability
represents an alternation between several classes of reliable
responses, called spike patterns (Toups et al., 2012). Such
spike patterns have been indeed observed in S1 (Telenczuk
et al., 2011), but neither the mechanism of their generation
nor their functional significance has been identified.

Here, we propose a mechanism that explains the pre-
cise patterns of single-neuron responses as an interplay
between synaptic inputs and intrinsic refractory proper-
ties of the neuron (Berry and Meister, 1998; Czanner et al.,
2015). To test this hypothesis, we develop simple models
capturing the two processes, and we are able to fit the
parameters of the models to extracellular recordings of
single-unit activity in the somatosensory cortex.

Methods
Experimental methods

Neuronal responses were evoked in the hand represen-
tation of the S1 of two awake Maccaca mulatta female
monkeys by electrical median nerve stimulation at the
wrist (pulse width: 0.2 ms; repetition rate: 3 Hz; intensity:

150% motor threshold; see also Fig. 1A). Single-unit ac-
tivity was recorded extracellularly using a 16-channel Eck-
horn drive (Thomas Recording GmbH; Eckhorn and
Thomas, 1993). Each of the platinum/glass electrodes
(electrode impedance: 1 M�) was advanced into cortex
(area 3b) until well-isolated neurons were found with one
of the electrodes. The receptive fields of the neurons were
tested by means of manual tapping using a stylus.

In addition, we recorded EEG signals from the surface
of the dura (epidural EEG) with two electrodes placed in
the vicinity of the micro-electrode array. The signals were
then high-pass filtered (�400 Hz) to obtain the high-
frequency EEG (hf-EEG).

All experimental procedures were performed according
to Home Office UK (Scientific Procedures) Act 1986 reg-
ulations and institutional ethical guidelines.

Spike sorting
From the extracellular recording we obtained spike wave-

forms that were first bandpass filtered (1–10 kHz) and then
sampled with a frequency of 20 kHz. Action potentials of
neurons surrounding the microelectrode were detected in
the extracellular recordings by means of amplitude thresh-
olding; the threshold was chosen manually to detect spikes
whose amplitude was significantly above noise level. The
wave shapes of the detected action potentials were param-
etrized by their amplitude, width and projection coefficients
on two main principal components. The spike timings of
single units were determined based on these shape features
using a manual cluster cutting method that allowed for iden-
tification of clusters of arbitrary shapes (Lewicki, 1998;
Hazan et al., 2006). To ensure correct clustering the proce-
dure was performed by two operators and then checked for
consistency.

To validate the spike discrimination, we checked the ex-
tracellular action potentials generated by a putative single
neuron for the consistency of the wave shape and ampli-
tude. Additionally, we searched for interspike intervals (ISIs)
shorter than 1 ms; if such short intervals were found the
clustering procedure was repeated. Spike trains with evi-
dence of poor spike sorting (inconsistent wave shapes or
ISIs � 1 ms) were excluded from subsequent analyses.

Spike pattern classification
From 46 neurons identified in the two monkeys, we

selected 17 neurons that responded with bursts of spikes.
Bursting neurons were defined by responses with more
than one spike for at least 4% of stimuli and a mode of the
ISI histogram shorter than 1.8 ms (Baker et al., 2003).

Among these 17 neurons we identified neurons that
also fired spontaneous bursts by counting the number of
ISIs in the poststimulus period (�30 ms after the stimulus)
that were shorter than 1.8 ms. In this time window, the
initial response dies out and baseline firing rate is re-
established. Neurons that fired at least 10% of bursts in
this window were labeled as spontaneous bursters.

In each neuron we summed spikes over all trials, and
we identified prominent peaks in the obtained poststimu-
lus time histograms (PSTH; bin width 0.2 ms; Fig. 3A). As
the within-burst spike composition varied from trial to trial,
each trial was described with a binary string whose entries
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(one or zero) represented the occurrence or nonoccur-
rence of a spike in a sequence of bins bracketing the
major peaks of the overall PSTH: the borders between the
bins were placed manually in the troughs of the PSTH
(Fig. 3A,B, vertical lines). Each binary string corresponded
to one spike pattern; the length of the string equalled the
total number of peaks in the PSTH.

In addition, we averaged the concomitant hf-EEG re-
sponses over trials concurring to each of the identified
spike patterns of a single neuron.

Spike-train probability model (STPM)
To reproduce the distribution of emitted spikes in a

single neuron, we chose a minimal model (STPM) that
could replicate the observed high variability in the cortical
responses (Softky and Koch, 1993; Destexhe et al., 2001)
and manifest refractoriness (decreased probability of
spiking for some time after producing a spike).

We assumed that a spike emission is a random point
process with the probability

p(spike in interval [t, t � dt])�{ti} � ��t�{ti}�dt , (1)

where �ti� denotes the spiking history earlier than time t,
and ��t��ti�� is the conditional intensity.

The conditional intensity ��t��ti�� is assumed to have a
Markov property, i.e., it is conditioned only on the time tlast

of occurrence of the last spike at time: ��t��ti�� � �
�t, tlast�. A further assumption is that the firing-rate modu-
lation and refractory effects are multiplicative, thus re-
flecting the reduction of spike probability due to, for
example, inactivation of sodium channels or hyperpolar-
ization caused by opening of potassium channels (Berry
and Meister, 1998):

�(t�tlast) � q(t)w(�t) , (2)

where q(t) is the intensity function, w(�t) is the recovery
function, and �t � t � tlast is the time interval since the last
spike.

Figure 1. Modeling responses to median nerves stimulation of neurons recorded in S1 of macaque monkeys. A, Sketch of the
experimental paradigm. B, Raster plot of 60-sample responses of a single neuron (top) and the PSTH calculated from all 956 trials
(bottom; sbt, spikes per bin per trial, bin size 0.2 ms). C, Simulation of the STPM with sample parameters: exponentially decaying
intensity function (left, red line) and recovery function implementing an absolute refractory period of �ref � 1.2 ms (right). The simulated
PSTH (left, black line) contains characteristic peaks separated by intervals �tpeak approximately equal to �ref (left, thin vertical black
lines). Note the similarity to the PSTH calculated from spikes of cortical neurons triggered by the median nerve stimulation (compare
with B, bottom panel).
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The parameters of the model, the intensity function q(t)
and the recovery function w(�t), are defined on a per-bin
basis, and they are fitted to experimental data by means
of a maximum likelihood approach. To capture fine tem-
poral details of the neuronal responses (for example, re-
sponse onset and ISIs) the intensity and recovery
functions were defined with a short sampling interval (0.05
ms). The log-likelihood function L�q;w��ti�� is obtained by
log-transforming the probability function of an inhomoge-
neous Poisson process with the above conditional inten-
sity (2; Johnson and Swami, 1983; Dayan and Abbott,
2001):

L(q ;w��ti�) � � �
0

T

q(t)w(t � tlast)dt

� �
i

ln [q(ti)w(ti � tlast)] . (3)

where T is the duration of response (T � 30 ms), i is the
spike index, and ti denotes the times of occurrence of
recorded spikes. The likelihood L of obtaining the exper-
imental spike train ti is maximized with respect to the
parameters q(t) and w(�t) by means of an iterative
expectation-maximization (EM) algorithm, which guaran-
tees that the global maximum is reached (Miller, 1985). In
addition, we ensure that after 5 ms the model neuron
recovers from refractoriness by setting the recovery func-
tion to unity for long intervals, i.e., we require w(�t � 5 ms) �
1 (Fig. 2A).

To study the effects of refractoriness on the modeled
responses, we compared the results to the STPM without
refractory period (nonrefractory STPM, w(�t) � 1 for all �t
� 0). The model is fully characterized by its intensity
function q(t), which can be estimated directly from the
experimental PSTH (bin width set to 0.05 ms to allow for
sufficient temporal precision).

Generalized linear model (GLM)
One limitation of the STPM is that the history effects are

restricted to the last spike only. To evaluate effects
evoked beyond the last spike, we considered the GLM
(Truccolo et al., 2005; Czanner et al., 2015) with condi-
tional intensity �GLM�t��ti�� of the form

�GLM(t | {ti}) � exp�s(t) � �
i

h(t � ti)	 (4)

where s(t) is the driving force and h(�) is the spike history
kernel.

Note that the intensity function q(t) of the STPM can be
identified with exp �s�t��, and the recovery function w(�t)
corresponds to exp� �

i
h�t � ti��. In contrast to the STPM,

in the GLM the effects of the previous spikes can extend
infinitely back in time. In practice, we reduce the number
of free parameters of the GLM by restricting the history
horizon above which the spikes cannot contribute to the
responses anymore; we thus set h�t 	 tmax� � 1. The
horizon tmax � 8 ms was selected to maximize the Akaike
Information Criterion (AIC), which balances the goodness

of fit with the number of free parameters of the model (Fig.
2C).

The likelihood of the GLM is defined analogously to the
STPM:

L(s ; h | {ti}) � � �
0

T

�GLM(t | {ti 
 t})dt

� �
i

ln �GLM(ti | {ti 
 t}) (5)

�� �
0

T

exp�s(t) � �
i

h(t � ti)	dt

� �
j

�s(tj) � �
i

h(tj � ti)	 (6)

where the sums go over all spikes.
Since the log-likelihood function is a convex function of

the parameters, they can be found using standard opti-
mization techniques. In the results presented here we
used the conjugate gradient optimization.

We compared the goodness-of-fit of the STPM and the
GLM using the time-wrapping method (Brown et al.,
2002): The ISIs in the experimental data were rescaled to
account for temporal variations in firing probability. If the
model perfectly reproduced the data the distribution of
the rescaled ISIs would be uniform (Fig. 2E, diagonal).

Model validation
To validate the model, the dataset was divided into two

nonoverlapping subsets of equal size: a training and a
validation set. The trials for each set were selected ran-
domly from all stimulation repetitions. The parameters of
the model were fitted to the training set. Based on these
parameters 1000 spike trains were simulated. The
goodness-of-fit was evaluated separately for two statis-
tics X, that is, the PSTH (with bin size 0.2 ms) and the
spike pattern distribution. For each of the two statistics,
the model error was evaluated as the normalised differ-
ences between the simulated Xmodel and validations spike
trains Xvalidate (cf. Rauch et al., 2003):

Err(Xmodel, Xvalidate) � �
i�1

N �Xi
model � Xi

validate�2

Xi
validate

, (7)

where X � Xi�l
N is either the PSTH or the spike pattern

distribution of model (Xmodel) or validation (Xvalidate) set; N
is the size of the vector and equals the number of bins
(N � 70 for T � 14 ms and 0.2-ms bins) or the number of
identified spike patterns (N � 16 for binary words of
length less or equal to 4).

The model error Err�Xmodel, Xvalidate� was compared
against the error between the training and validation sets
Err�Xtrain, Xvalidate� (reference error). The significance of the
difference between the model and reference errors was
quantified by means of the F test with (N– 1,N– 1) degrees
of freedom (Barlow, 1989) where

F � Err(Xmodel, Xvalidate)/Err(Xtrain, Xvalidate) . (8)
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Serial correlations
From the responses of single neurons we identified

spike triplets defined as three consecutive spikes sepa-

rated by intervals shorter than 4 ms. In this analysis, to
increase the number of intervals, we broadened the anal-
ysis window to 50 ms after the stimulus. Next, we calcu-

A B

C D

E F

Figure 2. Models with refractoriness can reproduce the experimental spike trains. A, Intensity function (left) and recovery (right) functions
of the STPM fitted to experimental data (an example for a single neuron). B, Comparison of PSTHs of the training data (top, dark blue line),
validation data (light blue line), and model data (red line). Note the overlap between the lines, which is a sign of the match between the model
and both the training and validation sets. The difference between the model PSTH from the validation PSTH (model residuals, bottom) is
equivalent to the intrinsic variation between the training and validation set (F � 1.02, p � 0.01, see Methods for definition). C, Fitted intensity
(left) and recovery functions (right) of the GLM (bin size, 0.25 ms). D, Correlation coefficients between the residuals (for the STPM shown
in B, bottom panel) and the validation PSTH (for the STPM shown light blue in B) calculated for three different models: the STPM, the STPM
without refractoriness (non-refr. STPM), and the GLM. Box plots represent the distribution of bootstrapped correlation coefficients:
boxes - quartiles, notch - median with confidence intervals, whiskers - range. The horizontal dashed line denotes the correlation coefficient
between the difference of PSTH of validation and training dataset with the training dataset PSTH. E, The empirical cumulative distribution
of the ISIs of the experimental spike trains rescaled according to the conditional intensity function of all three fitted models (time-wrapping
test). If the model perfectly reproduced the experimental ISIs the cumulative distribution should line up with the diagonal. This procedure
was repeated for two different bin sizes (0.05 ms, left; and 0.25 ms, right). F, The Kolmogorov-Smirnov (K-S) distance of the model
(maximum divergence of the model’s cumulative distribution from diagonal in E) decreased with an increasing bin size in both STPM and
GLM. This dependence on bin size was less pronounced for the GLM.
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lated Pearson’s correlation between the ISIs of the first
and the second spike and the second and the third spike
in the triplet (rdata). We compared the estimated rdata to the
correlation coefficient calculated from surrogate data
(rmodel) for the same number of trials, which were gener-
ated by the STPM model with parameters fitted to the
experimental spike trains. The significance of the differ-
ences between correlation coefficients found in simulated
and experimental ISIs was evaluated by means of a boot-
strap test. To this end, 1000 estimates of rmodel were
obtained from independently simulated datasets, and the
resulting coefficients were compared to rdata. The p value
was taken as the smaller of two values multiplied by 2: (1)
the fraction of bootstrap trials for which rmodel was greater
than rdata; or (2) the fraction of bootstrap trails for which
rmodel was smaller than rdata (two-sided bootstrap test).

Population model
To model the relation between spike patterns of a single

neuron and the response of the population, we extended
the STPM to a population of uncoupled neurons receiving
common inputs.

The population response was calculated from a simu-
lated ensemble of 5000 identical neurons. The parameters
of the STPM were fitted to the responses of the analyzed
neuron, and these parameters were shared by all 5000
model neurons. In each trial j the intensity function of all
neurons was modulated by a multiplicative gain factor Gj

that was drawn from a uniform distribution on the interval

1 � �, 1 � ��, where 0 � � � 1 is the strength of
modulation. The intensity function in trial j was then qj(t) �
Gjq(t). From the obtained single-trial single-neuron re-
sponses the total population response was calculated by
summing the binned spike responses of all neurons (bin
size 0.2 ms) and subsequent bandpass filtering (400-1200
Hz) corresponding to the analysis of EEG data.

Next, we randomly selected a single neuron from the
population and used its spikes for further analysis. We
classified the spike patterns of this neuron in single trials
based on the occurrence/omission of spikes in a discrete
sequence of spiking �windows�. The bandpass filtered
population response was then averaged over trials with
respect to the type of concomitant spike pattern. This
procedure, when applied to the model, reproduced the
analysis that was applied to the experimental data and
described above (see below, Spike pattern classification).
The root mean square (RMS) amplitude of the pattern-
specific average was compared with the experimentally-
obtained hf-EEG related to the same spike pattern
(Telenczuk et al., 2011). The similarity of the values across
different spike patterns was quantified by means of Pear-
son’s correlation coefficient.

Biophysical model
To understand the mechanisms of burst generation, we

developed a simplified single-neuron model. The model
consists of a linear neuron with a spiking threshold (leaky
integrate-and-fire, LIF), which receives conductance-
based inputs through depressing synapses (short-term
synaptic depression). The membrane potential in the
model follows the standard membrane equation:

Cm
dV
dt

� �gL(V � Vrest) � Isyn (9)

where Cm is the membrane capacitance, gL is the leak
conductance, Vrest is the resting potential, and Isyn are the
synaptic currents. When the membrane potential reaches
the threshold Vthr a spike is generated and the potential is
reset to Vreset putting the cell into a hyperpolarized state.
The total synaptic current in the leaky integrate-and-fire
(LIF) neuron is a sum of intracortical and thalamocortical
currents: Isyn�t� � ICortex�t� � ITh�t�.

The cortical synaptic currents are conductance-based
inputs from ninh inhibitory and nexc excitatory neurons. The
excitatory gexc and inhibitory ginh synaptic conductance
are a sum of contributions mediated by each spike, such
that gexc/inh�t� � �

texc/inh

g�t � texc/inh�. The times of the excit-

atory texc and inhibitory tinh synaptic inputs are drawn from
a homogeneous Poisson process with equal rates for
excitatory and inhibitory inputs fexc � finh. Each spike
results in a transient increase of the synaptic conductance
with an exponential time course:

g(t � tsp) � wexp� t � tsp

�
	 (10)

for t 
 tsp and 0 otherwise. Here tsp is the time of the
spike, w is the synaptic weight and � is the synaptic time
constant. The reversal potentials for excitation and inhi-
bition are Eexc and Iinh, respectively. With these definitions
the total current of cortical synapses is:

ICortex � gexc(t)(V � Eexc) � ginh(t)(V � Einh) (11)

In addition to the intracortical inputs, the neuron re-
ceives excitation from nTh thalamocortical excitatory neu-
rons. The thalamocortical neurons are silent in absence of
peripheral stimulation and generate Poisson-distributed
spikes 7.68 ms after the onset of the median nerve stim-
ulus (the delay takes account of the propagation delays
from periphery to the cortex). The strength of thalamocor-
tical excitatory synapses providing the feedforward inputs
to the model decays with the presynaptic activity follow-
ing the short-term synaptic depression mechanism (Tso-
dyks and Markram, 1997):

ICortex � gexc(t)(V � Eexc) � ginh(t)(V � Einh) (12)

dyi

dt
� �

yi

�1
� U(1 � yi � zi)�(t � tsp) (13)

dzi

dt
�

yi

�1
�

zi

�rec
(14)

where yi and zi are fractions of synpatic resources in
active and inactive states, �1 is the decay constant of
synaptic conductance, �rec is the recovery time from syn-
aptic depression and U describes the fraction of available
resources used by each presynpatic spike.

The postsynaptic current due to the thalamocortical
inputs is then:
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ITh � GTh(t)(V � Eexc) , (15)

where the total conductance due to thalamic inputs is
given by:

GTh(t) � �
i�1

nTh

yi(t)gTh,i (16)

gTh,i stands for conductance of a single synapse and yi its
efficiency.

Eight parameters of the model were adjusted to repro-
duce the experimental PSTH: weights of excitatory (wexc),
inhibitory (winh) and thalamocortical (wTh) synaptic inputs,
excitatory synaptic time constant (�exc), firing rates of
cortical (fexc) and thalamocortical (fTh) presynaptic neu-
rons, number of thalamocortical synapses (nTh), and use
of synaptic resources by thalamocortical synapse release
(U). Other parameters were fixed to values found in the
literature. The values of other parameters are given in
Table 1.

Results
Neurons in area 3b of macaque monkeys (S1) show

brief (�10 ms) bursts of activity in response to stereotyp-
ical electrical stimulation of the median nerve (0.2-ms
pulse, 1.5 time motor threshold applied transcutaneously
to the median nerve; see also Fig. 1A). In a dataset of 46
neurons recorded extracellularly using movable platinum-
glass electrodes (Eckhorn drive, Thomas Recordings) we

found 17 neurons that responded with burst of spikes
(defined as trains of two or more spikes with ISIs shorter
than 1.8 ms). When averaged over several repetitions of
the stimulation the responses gave rise to a poststimulus
time histogram (PSTH) with prominent peaks coincident
with the within-burst spikes (Fig. 1B). The appearance of
such PSTH peaks points to the precision of the burst
timing with respect to the onset of the stimulus.

Some of these bursting neurons also elicited spikes in
absence of median nerve stimulations (five neurons fired
at least 10% of bursts in the window [30, 300] ms after the
stimulus). The evoked and spontaneous bursts differed
slightly with respect to mode of the within-burst interval
distribution [evoked: 1.82 (1.71) ms; spontaneous: 1.32
(0.41) ms, mean (SD) across neurons] and burst length
[evoked: 2.76 (1.26) spikes per burst; spontaneous: 2.18
(0.39) spikes per burst], but these differences were not
statistically significant (t test, p � 0.01).

To understand the mechanisms underlying bursting of
neurons in the S1, we propose a phenomenological model
of the single-neuron response to the median nerve stim-
ulation. The model is based on two experimental obser-
vations. (1) On presentation of strong sensory stimuli,
layer IV cortical neurons are bombarded with intense and
coincident synaptic inputs from thalamocortical neurons
(Gil et al., 1999; Swadlow and Gusev, 2001; Hanajima
et al., 2004; Bruno and Sakmann, 2006; Cruikshank et al.,
2007). (2) After emitting a spike, neurons are refractory,
which limits their maximum firing rate (Gray, 1967; Berry

Table 1 List of parameters used in the LIF model

Parameter Symbol Units Value References

LIF neuron
Membrane capacitance Cm nF 0.5 Johnston and Wu (1995)
Leak conductance gL �S 0.025 Johnston and Wu (1995)
Rest potential Vrest mV -70 Johnston and Wu (1995)
Spike threshold Vthr mV -40 Johnston and Wu (1995)
Reset potential Vreset mV -70 Johnston and Wu (1995)
Cortical excitatory inputs
Synaptic weight wexc �S 0.0072 (�)
Synaptic time constant �exc ms 0.9 (�) Stern et al. (1992)
Synaptic reversal potential Eexc mV 0 Johnston and Wu (1995)
Number of connections nexc – 200 Douglas and Martin (2007)
Firing rate fexc Hz 10 (�)
Cortical inhibitory inputs
Synaptic weight winh �S 0.022 (�)
Synaptic time constant �inh ms 4 Johnston and Wu (1995)
Synaptic reversal potential Einh mV -70 Johnston and Wu (1995)
Number of connections ninh – nexc Douglas and Martin (2007)
Firing rate finh Hz fexc
Thalamocortical inputs
Synaptic weight wTh �S 0.035 (�)
Time constant �Th ms �exc
Reversal potential ETh mV Eexc
Number of connections nTh – 28 (�) Douglas and Martin (2007)
Firing rate fTh Hz 700 (�) Hanajima et al. (2004)
Use of synaptic resources U – 0.6-0.9 (�) Gil et al. (1997, 1999)
Decay of synaptic conductance �1 ms �exc
Recovery time �rec ms 700 Gil et al. (1997)

Value column indicates typical parameter values or ranges found in the literature (where available); � denotes the parameters which were adjusted to fit the
experimental data.
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and Meister, 1998; Kara et al., 2000). To illustrate the
effects of these two phenomena on neuronal responses,
we simulated a probabilistic model (the STPM; see Meth-
ods) with an exponentially decaying intensity function and
an absolute refractory period �ref � 1.2 ms (Fig. 1C). The
PSTH of the simulated spike responses qualitatively re-
produces main features of the PSTH obtained from ex-
perimental data. Specifically, the absolute refractory
period leads to an appearance of multiple peaks in the
PSTH (three peaks visible in Figure 1C: at 6, 7.8, and 9.5
ms after the stimulus) separated by deep troughs corre-
sponding to periods of quiescence during which the neu-
ron is refractory. The presence of such peaks and troughs
in the trial-averaged PSTH is possible because the re-
sponses of the neuron are reliable across trials. The first
peak of the PSTH reflects the initial spike triggered by the
sharp transient of the intensity function (Fig. 1C, red line).
This initial response is highly reliable, giving rise to the
narrowest and tallest PSTH peak (half-amplitude width:
0.75 ms; peak-to-trough amplitude: 1773 spikes/s in Fig.
1C, black line). The refractory state following the first
spike leads to a pronounced decrease of firing probability
and gives rise to the deep PSTH trough following the initial
PSTH peak. The subsequent PSTH peaks become wider
and are of smaller amplitude due to the gradual decay of
the intensity function (second peak: 1.25 ms, 1002
spikes/s; third peak: 1.25 ms, 290 spikes/s). The PSTH
obtained from this simulation is qualitatively similar to
cortical burst responses triggered by peripheral nerve
stimulation (compare Figure 1C, left, with B, bottom).

Refractoriness explains the intraburst intervals
We demonstrated that the STPM with a decaying inten-

sity function and an absolute refractory period can pro-
duce a PSTH that agrees qualitatively with the responses
of neurons in S1 of macaques. To test whether the STPM
can also quantitatively reproduce the fine details of neu-
ronal responses recorded in vivo, we inferred the intensity
and recovery functions directly from the data. The two
functions were defined on per-bin basis and were treated
as the free parameters of the model. These parameters
were then fitted to the experimental spike trains using a
convex optimisation technique guaranteeing the identifi-
cation of the most optimal model (see Methods; Fig. 2A).

The fitted intensity function peaks shortly after the stim-
ulus onset (�10 ms) and decays back to baseline when
the burst is terminated (Fig. 2A, left). The intensity function
still contains three distinct peaks, but they are less prom-
inent compared to the peaks in the PSTH (Fig. 1B). This
smoothing can be attributed to the decoupling of synaptic
inputs, which are represented by the intensity function,
from the refractoriness, which is represented by the re-
covery function (Fig. 2A, right). Although the maximum of
the intensity function is much above the rate at which
individual neurons can fire spikes, the refractoriness limits
the firing rate of the model neuron. In agreement with the
properties of biological neurons, the fitted recovery func-
tion is equal to 0 for the first 1 ms after emitting a spike
(absolute refractory period), but after a few milliseconds
fully recovers from the refractoriness returning to the rest

state (w(t) 	 1). Interestingly, immediately after the abso-
lute refractory period the recovery function over-shoots
for 
1 ms, largely exceeding the rest value. The fast (��1
ms) fluctuations following this over-shoot represent sta-
tistical noise due to the finite size of the data set. Alto-
gether, the parameters of the STPM disentangle the
synaptic inputs from the refractory effects.

The STPM provides a parsimonious description of
bursting in S1 cortex

The simulated peristimulus time histogram (Fig. 2B, red
line) matches closely the one obtained from the experi-
mental data (Fig. 2B, dark blue line). To demonstrate that
this good match is not a result of an over-fitting, we
performed cross-validation. First, the data set was di-
vided randomly into two subsets: training data and vali-
dation data. The model was fitted only to the first subset,
and then the results of the simulation were validated on
the second (Fig. 2B, light blue line). We found that the
difference of the fitted PSTH from the validation set was of
the same magnitude as the variation within the dataset
(see Methods; F test, p � 0.01). This test indicated that
the model optimally captured the features of both training
and validation set without considerable over-fitting.

The parameters of the model were fitted to each of the
17 neurons yielding similar results. Importantly, an appli-
cation of the cross-validation procedure revealed that in
12 out of the 17 neurons the PSTH simulated with the
model was not significantly different from the PSTH cal-
culated from the recorded spike trains (F � 0.65–1.59,
p � 0.01). In the remaining five neurons the modeled
PSTH deviated significantly from the validation PSTH (F �
2.33–4.88, p � 0.01, F test). This sub-population of neu-
rons may have differing firing properties that would need
more sophisticated models (implementing, for example,
bursting mechanisms; see Discussion).

To further analyze the cases in which the simulated
spike trains differed from the data, we subtracted the
model PSTH from the validation data PSTH (Fig. 2B,
bottom). The resulting residuals still contained fluctua-
tions aligned to the peaks of the PSTH. This indicated that
the model does not fully capture the shape of the PSTH.
Indeed, the correlation coefficient between the residuals
and the PSTH of the validation set was significantly pos-
itive (bootstrapped 95% confidence intervals; Fig. 2D)
meaning that the residuals contain some remnants of the
averaged neuron response. Altogether, these results
show that the STPM model is sufficient for describing
trial-averaged responses in the majority of recorded neu-
rons.

Poisson-like variability explains the occurrence of
temporal spike patterns in repeated trials

Having shown that the interplay between the intensity
and recovery functions of the STPM can account for a
large part of the trial-averaged response of a single neu-
ron, we tested whether the model can also explain the
trial-to-trial variability of the spiking of cortical neurons.

To quantify the trial-to-trial variability of neuronal re-
sponses, we sorted single-trial spike trains according to
the occurrence of spikes in predefined temporal windows
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(Fig. 3A–C). Each spike train was assigned a binary word
based on occupancy of preferred firing windows the bor-
ders of which were aligned to the troughs of the PSTH
(Fig. 3A, windows labeled x, y, and z). As explained above,
these troughs reflect the periods of quiescence due to the
refractoriness of the neuron. When the single-trial spike
trains were re-ordered according to the associated binary
word, we could distinguish between several patterns of

activity (spike patterns). In most trials the neuron fired in
all three windows (triplet, 111) or only the first two (dou-
blet, 110), where the input was the strongest (compare
with Fig. 2A), but also doublets with other combinations of
spikes and silences were common (Fig. 3C, spike pattern
frequency distribution). For example, the doublet 101 cor-
responds to trials in which the neuron fired at the onset of
the stimulation (Fig. 3A, window x), then remained silent

A

B C D

E F

xy
z

Figure 3. The STPM explains trial-to-trial variability of the data. A, Single-neuron responses averaged over all trials (PSTH, same as
in Fig. 1B) reveal that spikes occur preferentially at discrete latencies (delimited by vertical lines and indexed by x for the first peak,
y for the second peak, and z for the third peak). B, In single trials, multiple spikes are elicited in diverse combinations of preferred
latencies resulting in significant trial-to-trial response variability. Spike combinations are classified into spike patterns. The time axis
was first divided into three windows aligned to the peaks of the PSTH. Each trial was then assigned a binary string (spike pattern xyz,
from 000 to 111), where 1 represents the occurrence and 0 the absence of a spike in a window. Spike timings of eight representative
sample responses assigned to each pattern are shown as raster plots. C, Frequency at which the spike patterns occurred over
repeated trials for the neuron in A. D, Firing pattern distribution obtained from the data (white bars, same as C), the STPM (red bars)
and the nonrefractory STPM (blue bars). The firing rate of the Poisson model was estimated by a PSTH with bin size 0.05 ms. Inset
compares the PSTHs obtained from each model (color-coded like the bars in main panel). E, Scatter plot of two consecutive ISIs
within spike triplets calculated from the experimental data (filled circles) and responses simulated with STPM (empty circles). Serial
correlations (Pearson’s correlation coefficient) found in the experimental intervals (rdata) differ only slightly from the respective
correlations predicted by the STPM (rmodel, see values in the legend, solid and dashed lines represent the best linear fit to the
experimental and model data, respectively). F, Repeated Monte-Carlo simulations (n � 1000) of the STPM fitted to experimental data
provide the distribution of serial correlations consistent with the STPM (empty bars); the serial correlations estimated directly from
experimental data (vertical arrow, rdata) are likely to be drawn from the same distribution (two-sided bootstrap test, p � 0.81).
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during the second window (y) and fired again in the third
window (z); the omission of the spike in the window y is
the consequence firing late in the window x (see the
corresponding line in the raster plot; Fig. 3B), so that the
neuron is refractory during the window y. In other neurons
the number of discrete firing windows (determined by the
number of PSTH peaks) ranged from two to four, and a
similar distribution of spike patterns was obtained. The
appearance of such spike patterns can be attributed to
the chance phenomena (Poisson firing) and their interplay
with the structured input and refractoriness.

We found that the distribution of spike patterns in the
experimental data were similar to the distribution obtained
from the STPM (Fig. 3D). In contrast, when the recovery
function was constrained to 1 for all bins and the intensity
function estimated from the data (nonrefractory STPM)
some spike patterns appeared at frequencies much dif-
ferent from the experimental data (e.g., spike patterns
010, 110, 001, and 111; Fig. 3D), despite the fact that the
overall PSTHs were almost identical (Fig. 3D, inset). The
differences of spike pattern frequencies can thus be un-
derstood as the effect of refractoriness; without it the
probabilities of firing in each window are independent of
the occurrence of spikes in the previous windows, in
which case the frequency of a spike pattern can be di-
rectly predicted from the trial-averaged response (PSTH).

To quantify the similarity between the experimental and
modeled spike patterns, we used a cross-validated �2

statistics (see Methods, Eq. 7). In 12 of 17 examined
neurons the spike-pattern distribution of the STPM was
similar to the experimental distribution, and for five cells
they were significantly different (F test, p � 0.01); in two of
these five neurons the PSTH was not accurately predicted
by the STPM precluding the possibility of predicting the
trial-to-trial variations. In the remaining three neurons
there were substantial differences in the frequency of
selected spike patterns, which might reflect the misesti-
mation of the recovery function. Overall, these results
show that in most neurons the STPM with time-
dependent inputs and refractoriness can account not only
for the trial-averaged but also the trial-to-trial variability of
responses to somatosensory stimulation.

Within-burst intervals manifest significant
correlations

Next, we investigated whether the correlations between
consecutive ISIs (serial correlations) may play a role in the
generation of spike patterns. The STPM predicts that the
response should be fully determined by the current input
and the interval since the last spike. However, the calcu-
lation of the serial correlations in the experimental data
obtained from S1 showed that two consecutive ISIs are
not independent (Fig. 3E). Since significant serial correla-
tions might be induced by the firing-rate variations alone,
we compared the experimental serial correlations with the
ones obtained with the STPM, which does not assume
any correlations between ISIs. In the example shown in
Figure 3E the serial correlations are indeed accounted for
by the STPM model meaning that the spiking history
before the last spike does not affect the response.

In 12 out of 17 neurons the experimental and model
serial correlations were not significantly different (two-
sided bootstrap test, p � 0.01; Fig. 3F) confirming that for
most neurons the spiking memory did not extend over the
last spike. In three neurons the coefficient could not be
determined because of a low number of triplets identified
in responses. In two neurons the correlation coefficients
were larger in the data than in the fitted STPM model
(bootstrap test, p � 0.01).

We also compared the STPM with a GLM (Fig. 2C),
which can account for spiking history extending over the
last spike. The GLM showed a similar power in explaining
both the average PSTH compared to the STPM (t test,
p � 0.01; Fig. 2D, right box). However, it allowed for using
larger bins without significant loss of goodness-of-fit (Fig.
2E,F). Finally, the introduction of spike history effects ex-
tending over multiple preceding spikes did not explain the
significant serial correlations in every neuron. The GLM
could account for the measured serial correlations in 13 out
of 17 neurons. Overall, these results show that refractoriness
is sufficient to explain the statistics in the within burst inter-
vals obtained in most recorded neurons.

Trial-to-trial input variations induce significant serial
correlations

The significant serial correlations found in two neurons
could result from variability of the inputs that they receive.
Although the peripheral stimulation of the median nerve
used to evoke the somatosensory responses was well
controlled over the duration of the recording, it is possible
that the effective input to the cortex was modulated at the
early stages of somatosensory pathway (cuneate nucleus,
thalamus) and by on-going activity in the cortex. On the
other hand, the STPM was fitted under the assumption
that the inputs and model parameters do no change in
time, i.e., that they are stationary.

To test the effects of trial-to-trial variability on the esti-
mated STPM parameters and the serial correlations, we
simulated spike trains from the STPM with a step-like
recovery function and an exponentially decaying intensity
function (Fig. 4B,C, dashed lines). In addition, in each trial
we modulated the amplitude of the intensity function by a
multiplicative gain, G, which was randomly drawn from
uniform distribution on the interval [0.2, 1.8] (Fig. 4A).
Next, we fitted the simulated surrogate data with an
STPM assuming that the intensity function was fixed and
that the trial-to-trial variability resulted solely from the
probabilistic nature of the model. The fitted intensity func-
tion (Fig. 4B, red line) reflected the rapid onset and slower
decay of the input after the stimulus, but its trace deviated
from the “ground-truth” intensity function used in the
simulation (compare the solid red and dashed gray
curves; Fig. 4B). Importantly, the intensity function con-
tained small ripples akin to the ones visible in the intensity
function fitted to experimental data (Fig. 2A, left). Simi-
larly, the fitted recovery function did not capture the step-
like transition from refractoriness to baseline, but it
manifested a prominent overshoot following the absolute
refractory period and slower decay to baseline (Fig. 4C);
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such time-dependence was reminiscent of the shape of
recovery function estimated from the data (Fig. 2A, right).

We also studied the effects of the gain modulation on
the GLM. The intensity function estimated with this model
still contained fluctuations absent in the function used for
simulation, but their amplitude was reduced compared to
the STPM. A greater improvement was observed in the
GLM estimate of the recovery function, which approxi-
mated well the real function without a visible overshoot.
Overall, both STPM and GLM misestimated some model
parameters in presence of trial-to-trial variation, but we
found that the GLM was more robust (Fig. 4D).

Finally, we estimated the serial correlation between the
ISIs in presence of the input modulation. We found that
the serial correlation was significantly larger compared to
the spike trains simulated with the STPM with no trial-to-
trial variations (Fig. 4E). This result shows that positive
serial correlations can be obtained when neuronal re-
sponses vary from trial to trial reflecting changing inputs
or excitability of the neuron. Since in our analysis in Figure
3E,F we compared experimental serial correlations to the
ones obtained from the STPM, which does not account
for the input variability, our estimate of serial correlations
could reflect input modulation.

In summary, we show that the trial-to-trial variations of
the input can explain several aspects of the STPM fitted to
experimental data, in particular the ripples in the fitted

intensity functions, overshoot following the refractoriness
in the recovery function, and significant correlations be-
tween consecutive ISIs.

Trial-to-trial input variations induce correlations
between single-neuron and population responses

Simultaneous recordings of single-neuron spike patterns
and macroscopic EEG signals recorded from the surface of
dura (high-frequency, �400 Hz, epidural hf-EEG) have
shown that the spike patterns are not private to each neuron
but that they are coordinated across a population of neurons
responding to peripheral stimulation (Telenczuk et al., 2011).
Such a coordination could possibly by achieved with a
millisecond range-synchronization of the neurons, but the
mechanisms of such a synchronization are not clear. Alter-
natively, it could be produced by the shared modulation of
inputs or excitability. To test the latter hypothesis, we ap-
plied our probabilistic single-neuron model, the STPM, to a
population of neurons receiving common gain modulation
(Fig. 5A).

As before, we assumed that the gain varies from trial to
trial due to fluctuations in excitability, synaptic strength, or
background activity. To investigate the effect of the gain
factor on the population response, we simulated 5000
identical, statistically independent model neurons with the
parameters estimated from the experimental data. We
found that the frequencies of individual spike patterns

Figure 4. Input modulation may explain deviations of spike train statistics from the STPM and GLM. A, The STPM was extended by
including a multiplicative gain factor, which acts on the input function. The gain factor was randomly selected from a uniform
distribution [0.2, 1.8] in each trial. The model was simulated with an exponentially decaying intensity function (B, dashed line);
maximum amplitude, 4000 spikes/s, time constant, 3 ms; and a step recovery function (C, dashed line); refractory period, 1.4 ms. B,
Intensity function of the STPM (red) and GLM (blue) fitted to the simulated spike trains. The intensity function manifests deviations
from the real intensity function used in the simulation (dashed line; gray-shaded area corresponds to the amplitude range of intensity
function taking into account the gain factor). C, Recovery function of the STPM (red) and GLM (blue) fitted to the simulated spike
trains. The STPM-estimated recovery function displays a characteristic overshoot soon after end of the absolute refractory period (1.4
ms; dashed line, real recovery function underlying the spike trains). D, RMS error of the intensity and recovery functions estimated
with the STPM and GLM. E, The serial correlation of the model with gain modulation (arrow) is significantly larger (p � 0.01) than
predicted in absence of modulation (bar plot, histogram of 1000 serial correlation coefficient obtained from Monte Carlo simulations
of the STPM with the intensity and recovery functions shown in B, C, red line).
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depended on the value of the gain factor: Some patterns (for
example 100) occur more frequently at low gain (G � 0.8),
while others (for example 110) tend to occur more often at
high gain (G � 1.2; Fig. 5B). Concurrently, the amplitude of
the binned spike trains averaged across neurons (population
PSTH) increased with the gain (Fig. 5C).

The concurrent dependence of population PSTH and
single-neuron spike pattern distribution on the gain factor
may also explain the correlation between single-neuron
responses and macroscopic population activity found in
experimental data. Spike patterns that are more frequent
at low gain coincide predominately with a low-amplitude
population PSTH whereas spike patterns elicited more
frequently at high input gain, on average, coincide more
often with a high-amplitude population PSTH. Conse-
quently, the amplitude of the population PSTH might
co-vary with single-neuron spike patterns. In particular,
we found that the RMS amplitude of the high-pass filtered
PSTH (�400 Hz) depends on the spike pattern used for
grouping the trials (Fig. 5D).

To test whether gain modulation could explain the ex-
perimental results, we simulated the STPM model with

trial-varying gain factor (see Methods) and compared the
spike-pattern-specific hf-EEG amplitude calculated from
experimental data with the simulated population re-
sponse. We found that already for a modest level of the
gain modulation (modulation strength � � 0.2) the RMS
amplitudes of the experimental hf-EEG and high-pass-
filtered population PSTH of the model were strongly cor-
related (an example for one neuron, Pearson’s r � 0.93;
Fig. 5E).

We found a positive correlation coefficient in 12 of 16
neurons that produced at least three different patterns.
This fraction is significantly above the chance level ex-
pected from uncorrelated quantities (two-sided binomial
test, p � 0.05). Thus, we conclude that gain modulation
can introduce correlations between the single-neuron
spike patterns and macroscopic population responses.

Spike patterns emerge as input-driven phenomena
in a simplified biophysical model of a cortical neuron

The probabilistic models presented so far are abstract,
and their parameters (intensity and recovery functions)
cannot be linked directly to biophysical properties of a

A B

C

D E

Figure 5. Coordination of spike patterns in the population. A, Simulation of 5000 identical units described by the STPM (Fig. 2C) with
gain modulation of the strength � � 0.2. From the simulated spike trains of all neurons (short ticks represent sample spike times) the
population PSTH was calculated (bottom, black line) and then high-pass filtered to obtain an estimate of the hf-EEG population
response (bottom, red line). B, Distributions of spike patterns of a single neuron in 1000 repetitions of the simulation with a low (0.8,
blue) and a high (1.2, red) gain. C, The population PSTH before (top panel) and after high-pass filtering (bottom panel) varies with the
gain (blue: 0.8, red: 1.2). D, Single-neuron spike pattern and root-mean square (RMS) amplitude of the high-pass filtered population
PSTH are correlated because both the spike pattern and the PSTH depend on the gain. Box plots represent distribution of single-trial
RMS amplitudes for each spike pattern of a single neuron (boxes - quartiles, horizontal lines - medians, whiskers - range excluding
outliers, crosses - outliers). E, The simulated population RMS amplitudes correlate with experimental hf-EEG RMS related to the same
pattern (hf-EEG RMS; Telenczuk et al., 2011).
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neuron. To interpret the generation of spike patterns
mechanistically, we developed a simplified biophysical
model of a cortical neuron based on the LIF model. Al-
though this model does not reproduce faithfully all biolog-
ical properties of realistic neurons, it captures their
integration and spike generation properties, which are
essential to the responses analyzed here. We simulated
the neuron with two types of synaptic inputs, tonic excit-
atory and inhibitory inputs, and phasic thalamic excitatory
inputs representing the barrage of action potentials trig-
gered by peripheral stimulation.

In absence of thalamic inputs the model neuron elicits
only few spikes due to spontaneous threshold crossings.
However, in the model the median nerve stimulation is
assumed to activate the thalamocortical fibers (28 syn-
apses per cortical neuron), which then fire randomly ac-
cording to a Poisson distribution with the rate of 700
spikes per second. These massive inputs trigger excit-
atory postsynaptic currents bringing the membrane
quickly to the threshold. This results in a series of spike
emissions accompanied by rapid successions of mem-
brane de- and repolarizations (Fig. 6A).

We calculated the PSTH of the model by summing
spike responses of n � 500 repetitions of the simulation.
In each repetition the intracortical excitatory and inhibitory
inputs, as well as the thalamocortical inputs, were drawn
randomly from the Poisson distribution. Despite this ran-
domness, the model PSTH is composed of discrete peaks
well separated by short valleys showing that the neuron
fired precisely at preferred latencies (Fig. 6B). Although
the LIF model does not contain an explicit refractoriness,
the intervals between the PSTH peaks correspond to the
time required to depolarize the membrane from the reset

potential (Vreset � –70 mV) to the spiking threshold (Vthr �
–40 mV). In Figure 6A, this time is seen as the slow rise
time following the rapid downstrokes (reset) of the mem-
brane potential triggered by spikes. Such a hyperpolar-
ized period acts effectively as the refractory period as
seen in the STPM and GLM.

The characteristic decay of the response in the somato-
sensory cortex observed in the experimental data (Fig. 1B)
could be driven by the adaptation of the neuron to the
intense stimulation either at synaptic (Markram and Tso-
dyks, 1996) or neuronal level (Benda and Herz, 2003).
Here, we model this process by means of short-term
synaptic depression, which reflects the depression of
thalamocortical synapses due to prolonged activity (Gil
et al., 1997). The gradual decrease of synaptic drive
makes the subsequent peaks smaller, broader, and sep-
arated by longer intervals (Fig. 6B) as observed also in the
experimental PSTH (Fig. 1B). After 10 ms of stimulation,
the thalamocortical synapses deplete, abolishing further
discharges.

In practice, the inputs to somatosensory cortex can
also decay after a brief median nerve simulation (0.2 ms)
applied to the median nerve invalidating our assumption
of sustained synaptic drive. However, it has been found
that the thalamocortical projections can respond with
prolonged firing to brief presentation of the stimulus
(Swadlow and Gusev, 2001). Interestingly, such re-
sponses also formed bursts of action potentials. If the
axonal delays of multiple thalamocortical neurons are
matched at the submillisecond level, such bursts could
provide oscillatory inputs cortical level. The effects of
such input patterns on the cortical responses should be
investigated in the future.

A
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D

E

Figure 6. A LIF model produces variable spike patterns. A, Sample traces of the membrane potential Vm(t) of a LIF model (see
Methods for details) for three repetitions of the simulation. The ticks mark the threshold crossings, which lead to spike emission (color
matched to the color of Vm trace). B, Poststimulus time histogram (firing rate) of spike trains obtained from 500 repetitions of the
simulation. Vertical dashed lines delineate the events used for spike pattern analysis in D. C, Spike raster from all repetitions of the
simulation. The “stim” arrow denotes the onset of the simulated thalamic inputs. D, Distribution of spike patterns obtained in the
simulation of a LIF neuron (inset, PSTH). E, Distribution od spike patterns and PSTH (inset) for a model with modified parameters.
Increasing the presynaptic firing rates of intracortical connections leads to higher coincidence of 101 and 011 patterns. In A-D the
following parameters were used: wexc � 0.0072 �s, �exc � 0.9 ms, fexc � 10 Hz, winh � 0.02252 �s, wTh � 0.035 �s, nTh � 28, fTh
� 700 Hz, U � 0.65. E, Four parameters were modified from this baseline: fexc � 30 Hz, wTh � 0.05 �s, fTh � 300 Hz, U � 0.7. All
definitions and values of the remaining parameters are listed in Table 1.
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The responses of the LIF model neuron vary from trial to
trial (Fig. 6C,D). This variability results from random cor-
tical and thalamocortical inputs, which provide Poisson-
distributed input spikes. Increasing the rate of inhibitory
and excitatory inputs in a balanced fashion puts the neu-
ron in a so-called noise-driven regime in which spikes are
evoked by the random fluctuations over the threshold
rather than by the mean depolarization (Destexhe et al.,
2003; Zerlaut et al., 2016). In this regime, the responses of
the neuron are more variable such that a broader range of
different spike patterns is obtained across the trials. In
particular, we found that the patterns with long latencies
(such as, 011) or spike omissions (101) became more
frequent at higher intracortical firing rates (Fig. 6E).

In summary, the LIF model indicates that bursts in the
somatosensory cortex can be driven by the input and do
not always require intrinsic bursting mechanisms (re-
viewed by Krahe and Gabbiani, 2004). The number of
spikes per burst and the within-burst intervals can be
mechanistically explained by the integrating properties of
single neurons that are equipped with an intrinsic adap-
tation process or driven by synapses that show short-
term depression. Strong thalamic inputs can produce
precise population responses at preferred latencies,
which can overcome the variability. At the single-trial level
the variability of the thalamic input is expressed in the
form of stereotyped spike patterns.

Discussion
By means of simplified phenomenological models and a

biophysical point-neuron model, we showed that within-
burst variability of cortical S1 neurons can be decom-
posed into the private variability of each neuron and
multiplicative input modulation that is shared by the entire
population. The private variability explains most of the
differences between responses elicited in single trials and
underlies the re-appearance of the same spike patterns
over multiple repetitions of the stimulus. The shared gain
modulation coordinates the responses of many respond-
ing neurons and explains the puzzling co-variability
between single-neuron and macroscopic population re-
sponses demonstrated in experimental recordings (Te-
lenczuk et al., 2011). The models shed also light on the
mechanism of S1 burst generation, their synchronization
across neurons, and suggest that spike patterns may
encode time-varying cortical state at fast temporal scales.

Mechanism of bursting
By means of a simple phenomenological model, the

STPM, we showed that bursting in the S1 results from the
combination of intense synaptic bombardment and a re-
fractory period. Such fast bursting triggered and sus-
tained by an intense synaptic input has been termed
“forced bursting” (Izhikevich, 2006).

The shape of a fitted recovery function in both models
agrees well with the contribution of an after-hyper-
polarization (AHP)-mediated potassium current and an
after-depolarization (ADP) due to either persistent (Bal
and McCormick, 1996; Brumberg et al., 2000) sodium or
low-threshold calcium current (Jahnsen and Llinás, 1984):
The initial dip, which we interpret as refractoriness, might

reflect the AHP and the inactivation of sodium channels,
whereas the subsequent over-shoot might correspond to
the ADP. We note, however, that the over-shoot might be
an artifact due to trial-to-trial variability (Fig. 4C). We also
demonstrated in a toy model that the over-shoot is not
critical for bursting responses, the absolute refractory
period combined with intense but transient inputs is suf-
ficient to produce bursts with similar (but not identical)
statistics (Fig. 1C).

The STPM could also account for the correlations be-
tween ISIs (serial correlations). However, in a few neurons
we found serial correlations differing from the ones it
predicted. Since in these neurons processes occurring at
long time scales could shape the spike patterns, we fitted
them with the GLM, which considers spike-history effects
extending to multiple ISIs. We found that the GLM with a
horizon of 8 ms provided an optimal fit to these data in
agreement with the time scales of short-term synaptic
plasticity (Tsodyks and Markram, 1997) and firing-rate
adaptation (Benda and Herz, 2003). The latter is often
mediated by the slow AHP currents providing another link
between a biophysical process and the recovery function
of our phenomenological model.

The significant serial correlations could be also ex-
plained by a model which includes trial-to-trial variations
of the input intensity (gain modulation). We found that
introducing such variations in the model results in the
over-estimation of the serial correlations estimated from
the simulated data. In addition, these variations may lead
to the over-estimation of the recovery function in form of
the overshoot appearing briefly after the absolute refrac-
tory period. Although such an overshoot is also present in
the recovery function estimated from the data, we believe
that it is not an artifact of the estimation method. First, the
modulation must be strong (� � 0.8) to produce a visible
overshoot, whereas we found that modest modulation (�
� 0.2) is consistent with the serial correlation and EEG
correlation estimated in the data. Secondly, we found that
GLM is robust with respect to such modulation intro-
duced in the simulated model, but still it uncovers an
overshoot in the experimental data. Nevertheless, in the
future it would be instructive to extend the spike-train
models (STPM and GLM) with the fluctuating gain factor
and fit it directly to the data.

We were able to reproduce qualitatively both the aver-
age and single-trial features of the burst responses in a
more realistic LIF neuron. Although such models are a
gross simplification of the real neurons both in terms of
spiking mechanism and morphologic features, it has been
suggested that the LIF may faithfully reproduce some
features of spike generation (Brette, 2015). In the model,
the within-burst interval was controlled by the time re-
quired to reach the threshold from the hyperpolarized
state (membrane time constant), and the gradual decay of
the amplitude of PSTH peaks was due to the short-term
synaptic depression. The latter mechanism can be related
to the depletion of the available vesicles in the presynaptic
terminal (Markram and Tsodyks, 1996). However, it would
be possible to replace it with some other form of adapta-
tion (Brette and Gerstner, 2005). Both mechanisms lead to
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extinction of the initial synaptic drive, which explains the
burst-like transient response to the step-like thalamic
inputs. We note, however, that without recordings from
thalamocortical projection neurons we cannot infer the
inputs of the cortical neurons. Our models are still com-
patible with temporally structured inputs.

The trial-to-trial variability of the model was due to
variable arrival times of the thalamic inputs, but also due
to the intracortical inputs. The latter were configured such
that the neuron was in the “high-conductance state” re-
producing the property of cortical neurons receiving con-
stant bombardment of inhibitory and excitatory inputs
(Destexhe et al., 2003). Apart from decreasing the mem-
brane time constant thus allowing for rapid repeated dis-
charges, these intracortical inputs introduced substantial
trial-to-trial variability that could explain the observed
spike pattern distribution.

Previous studies have shown that most of the bursting
neurons in the S1 macaque cortex are characterized by
broad spikes, which suggests that they are pyramidal
neurons or spiny stellate neurons (Baker et al., 2003). This
is confirmed by intracellular recordings in barrel cortex
showing that regular spiking neurons but not intrinsic
bursting neurons followed the phase of high-frequency
oscillations in surface recordings (Jones et al., 2000). Our
results are consistent with these findings and strengthen
the evidence that a subclass of S1 neurons activated by
median nerve stimulation belongs to the regular spiking
neurons. However, a subset of neurons analyzed here (5
of 17 neurons) did also fire bursts that were not locked to
the median nerve stimulation showing that at least some
of them may belong to the intrinsic bursting class.

Burst synchronization
A striking feature of the S1 bursting is that the signature

of the burst also appears in macroscopic signals such as
the EEG. The visibility of the burst in the surface record-
ings was interpreted as a sign of strong synchronization
between the neurons (Jones et al., 2000), which could be
mediated, for example, by fast synaptic potentials or gap
junctions (Draguhn et al., 1998). By extending our model
to a population of uncoupled neurons, we demonstrated
that the sub-millisecond synchronization between multi-
ple neurons does not require a fast coupling mechanisms,
but results from shared synaptic inputs arriving through
thalamocortical fibers. Provided that the biophysical
properties of the receiving population and axonal conduc-
tion times vary in a narrow range, these inputs will elicit
synchronous bursts of spikes. The required precision in
the arrivals of afferent spikes could be achieved by means
of a plasticity rule that selects inputs arriving synchro-
nously at the cortical synapses (Gerstner et al., 1996).

Role of spike patterns
Trial-to-trial variations in S1 responses can be classified

into a set of spike patterns defined by the occurrences of
spikes within 10-ms-long bursts (Telenczuk et al., 2011).
Such temporal patterns of neuronal responses were first
identified in cat striate cortex and crayfish claw (Dayhoff
and Gerstein, 1983), and later in the temporal cortex of
monkeys, cat lateral geniculate nucleus (Fellous et al.,

2004) and in the rat hippocampus (Diba and Buzsáki,
2007; Schmidt et al., 2009).

Here, we proposed a model in which the occurrence of
spike patterns is regulated by the input intensity, that is
the rate of incoming spikes; in contrast precise timing of
the input was not necessary. The temporal information
stored in the spike patterns is complementary to the
output rate (spike count) in the sense that the spike
patterns with identical number of spikes (and therefore the
same output rate) could still provide extra information
concerning its inputs. For example, the early (110) doublet
is more common for high input intensity; the opposite is
true for the late (011) doublet (Fig. 5B). This mechanism
could be especially useful for encoding inputs that would
normally exceed the maximum firing rate set by the re-
fractory period.

In one study the stimulus intensity was related to the
within-burst intervals of spike responses recorded in the
dorsal lateral geniculate nucleus (Funke and Kerscher,
2000). Our results are consistent with this hypothesis. In
the STPM, the within-burst intervals are constrained by
the refractory period, but their length can also vary as a
function of the synaptic drive (intensity function). In addi-
tion, the length of refractory period may not be fixed but it
might be modulated by the firing rate. It has been shown
that models allowing for this modulation may better de-
scribe the spike times in response to the time-varying
stimulation (Koyama and Kass, 2008).

Short trains of spikes are also well suited to evoke
specific synaptic response or trigger synaptic plasticity
(Lisman, 1997; Tsodyks and Markram, 1997; Maass
and Zador, 1999; Song et al., 2000; Swadlow and
Gusev, 2001), they are optimally placed to represent
neuronal variables in a form that is easily processed,
stored and transmitted (Leibold et al., 2008; Tiesinga
et al., 2008). In this spike-timing-based view, neural
systems take advantage of the temporal information
encoded into spike patterns to represent slowly-
changing cortical states (such as attention or waking).
Alternatively, spike patterns could also allow for more
reliable representation of neuronal inputs (Toups et al.,
2012). These rate-based and spike-timing-based inter-
pretations of spike patterns are not contradictory and
could even act as independent communication chan-
nels (Tiesinga et al., 2008).

We showed that the distribution of spike patterns over
neurons and the amplitude of the averaged population
signal are regulated by input magnitude, which could
reflect gating of neuronal signals through attention, ex-
pectation, sleep and waking (Steriade et al., 2001; Shu
et al., 2003; Fontanini and Katz, 2008). Similar gain control
mechanisms were implemented in realistic neural models
through, for example, concurrent modulation of excitation
and inhibition (Hô and Destexhe, 2000; Chance et al.,
2002; Vogels and Abbott, 2009) or short-term synaptic
depression (Rothman et al., 2009). More generally, multi-
plicative noise can account for the variability and co-
variability of neuronal responses in the thalamus and
many cortical areas, including the lateral geniculate nu-
cleus, V1, V2, and MT (Goris et al., 2014).
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Population correlates of spike patterns
Macroscopic signatures of the bursts were shown to

match the somatosensory-evoked potentials in monkey
epidural EEG and human scalp EEG, so the high-
frequency EEG burst might link the noninvasive macro-
scopic recordings and microscopic neuronal activity
(Curio, 2000; Telenczuk et al., 2011). We could reproduce
this puzzling relation between the single-neuron spike
patterns and the macroscopic EEG signals by means of
the STPM with the gain modulation. To model the high-
frequency EEG signals, we used the high-pass filtered
average response of the population (population PSTH).
This choice was motivated by previous studies on the
origins of the high-frequency EEG signals: while the
low-frequency field potentials are known to correlate
mostly with the synaptic currents (Buzsáki et al., 2012;
Mazzoni et al., 2015), it has been recently demonstrated
that the population spike rate is a better predictor of
high-frequency �400-Hz EEG power (Tele �nczuk et al.,
2011; Tele �nczuk et al., 2015). Based on these results
we conclude that the link between the microscopic and
macroscopic activity could be partially explained by the
neuronal correlations mediated by the common gain
modulation.

To sum up, our modeling shows how the characteristic
features of the spike burst, i.e., its frequency and ampli-
tude, can be related to the biophysical properties of neu-
rons, such as refractory period and short-term synaptic
depression, whereas the internal burst composition is
controlled by the background activity and gain modula-
tion. As a conclusion we argue that the brain could use
small within-burst timing differences to encode the dy-
namical cortical state into precise spike patterns amena-
ble to neuronal processing.
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